AI-Agents-Orchestrator

Architecture Documentation

Table of Contents

Overview

The AI Coding Tools Orchestrator is built on a modular, extensible architecture that enables multiple AI agents to collaborate effectively. The system follows enterprise design patterns and best practices for scalability, reliability, and maintainability.

Core Principles

System Architecture

High-Level Architecture

graph TD
    subgraph "User Interfaces"
        CLI[CLI Interface<br/>Click + Rich]
        UI[Web UI<br/>Vue 3 + Flask]
    end

    subgraph "Core Orchestration Layer"
        ORCH[Orchestrator Core]
        WF[Workflow Engine]
        TM[Task Manager]
        CFG[Config Manager]
    end

    subgraph "Cross-Cutting Concerns"
        SEC[Security Layer]
        CACHE[Cache Layer]
        METRICS[Metrics System]
        LOG[Logging System]
        RETRY[Retry Logic]
    end

    subgraph "Adapter Layer"
        BASE[Base Adapter]
        COMM[CLI Communicator]
        CLA[Claude Adapter]
        COD[Codex Adapter]
        GEM[Gemini Adapter]
        COP[Copilot Adapter]
    end

    subgraph "External AI Services"
        CLAUDE[Claude Code CLI]
        CODEX[Codex CLI]
        GEMINI[Gemini CLI]
        COPILOT[Copilot CLI]
    end

    CLI --> ORCH
    UI --> ORCH
    ORCH --> WF
    ORCH --> TM
    ORCH --> CFG

    ORCH -.-> SEC
    ORCH -.-> CACHE
    ORCH -.-> METRICS
    ORCH -.-> LOG
    ORCH -.-> RETRY

    WF --> BASE
    BASE --> COMM
    BASE --> CLA
    BASE --> COD
    BASE --> GEM
    BASE --> COP

    CLA --> CLAUDE
    COD --> CODEX
    GEM --> GEMINI
    COP --> COPILOT

Component Layers

  1. Interface Layer - User-facing interfaces (CLI and Web UI)
  2. Orchestration Layer - Core business logic and workflow management
  3. Cross-Cutting Layer - Security, caching, metrics, logging
  4. Adapter Layer - AI agent integrations
  5. External Services - Third-party AI CLIs

Component Design

Orchestrator Core

The central component that coordinates all operations.

graph LR
    A[Orchestrator Core] --> B[Workflow Manager]
    A --> C[Task Manager]
    A --> D[Context Manager]
    A --> E[Result Aggregator]

    B --> F[Workflow Execution]
    C --> G[Task Distribution]
    D --> H[Session Storage]
    E --> I[Output Formatting]

Responsibilities:

Key Files:

Workflow Engine

Manages workflow definitions and execution.

stateDiagram-v2
    [*] --> LoadWorkflow
    LoadWorkflow --> ValidateWorkflow
    ValidateWorkflow --> InitializeAgents
    InitializeAgents --> ExecuteStep
    ExecuteStep --> CollectFeedback
    CollectFeedback --> ShouldIterate
    ShouldIterate --> ExecuteStep: Yes
    ShouldIterate --> AggregateResults: No
    AggregateResults --> [*]

Workflow Types:

  1. Sequential - Agents execute one after another
  2. Parallel - Multiple agents execute simultaneously
  3. Iterative - Repeated cycles with feedback
  4. Conditional - Branch based on results

Configuration:

workflows:
  default:
    - agent: "codex"
      task: "implement"
    - agent: "gemini"
      task: "review"
    - agent: "claude"
      task: "refine"

Adapter Layer

Abstracts AI agent interactions through a common interface.

classDiagram
    class BaseAdapter {
        <<abstract>>
        +name: str
        +command: str
        +timeout: int
        +execute(task) Task Result
        +validate_response() bool
        +format_output() str
    }

    class ClaudeAdapter {
        +execute(task)
        -parse_claude_output()
    }

    class CodexAdapter {
        +execute(task)
        -parse_codex_output()
    }

    class GeminiAdapter {
        +execute(task)
        -parse_gemini_output()
    }

    class CopilotAdapter {
        +execute(task)
        -parse_copilot_output()
    }

    BaseAdapter <|-- ClaudeAdapter
    BaseAdapter <|-- CodexAdapter
    BaseAdapter <|-- GeminiAdapter
    BaseAdapter <|-- CopilotAdapter

Base Adapter Interface:

class BaseAdapter(ABC):
    @abstractmethod
    def execute(self, task: str, context: Dict[str, Any]) -> TaskResult:
        """Execute task with the AI agent"""
        pass

    @abstractmethod
    def validate_response(self, response: str) -> bool:
        """Validate agent response"""
        pass

    @abstractmethod
    def format_output(self, response: str) -> str:
        """Format output for consumption"""
        pass

CLI Communicator

Handles robust communication with external CLI tools.

sequenceDiagram
    participant O as Orchestrator
    participant C as CLI Communicator
    participant A as AI Agent CLI

    O->>C: execute_command(cmd, input)
    C->>C: validate_input()
    C->>C: apply_timeout()
    C->>A: spawn_process(cmd)
    A-->>C: stdout/stderr
    C->>C: parse_output()
    C->>C: handle_errors()
    C-->>O: TaskResult

Features:

Data Flow

Task Execution Flow

sequenceDiagram
    participant U as User
    participant CLI as CLI/UI
    participant O as Orchestrator
    participant W as Workflow Engine
    participant A as Adapter
    participant AI as AI Agent

    U->>CLI: Submit task
    CLI->>O: execute_task(task, workflow)
    O->>O: Validate input
    O->>O: Load configuration
    O->>W: execute_workflow(task)

    loop For each agent in workflow
        W->>A: execute(task, context)
        A->>AI: Send command
        AI-->>A: Response
        A->>A: Parse & validate
        A-->>W: TaskResult
        W->>W: Update context
    end

    W-->>O: WorkflowResult
    O->>O: Aggregate results
    O-->>CLI: Final output
    CLI-->>U: Display results

Conversation Mode Flow

sequenceDiagram
    participant U as User
    participant S as Shell
    participant C as Context Manager
    participant O as Orchestrator

    U->>S: Initial task
    S->>O: execute(task)
    O-->>S: Result
    S->>C: store_context(task, result)

    U->>S: Follow-up message
    S->>S: detect_followup()
    S->>C: get_context()
    C-->>S: Previous context
    S->>O: execute(followup, context)
    O-->>S: Result
    S->>C: update_context(result)

File Generation Flow

graph LR
    A[Task Execution] --> B[Agent Response]
    B --> C[Extract Code Blocks]
    C --> D[Validate File Paths]
    D --> E[Check Workspace]
    E --> F{File Exists?}
    F -->|Yes| G[Create Backup]
    F -->|No| H[Create New File]
    G --> H
    H --> I[Write Content]
    I --> J[Update File Registry]
    J --> K[Return File Paths]

Adapter Pattern

Why Adapters?

Adapters provide a consistent interface to heterogeneous AI agent CLIs:

Adapter Implementation

class ClaudeAdapter(BaseAdapter):
    def __init__(self, config: Dict[str, Any]):
        super().__init__(config)
        self.command = config.get("command", "claude")
        self.timeout = config.get("timeout", 300)

    def execute(self, task: str, context: Dict[str, Any]) -> TaskResult:
        # Build command
        cmd = self._build_command(task, context)

        # Execute with retry logic
        response = self.communicator.execute(
            cmd,
            timeout=self.timeout,
            retries=3
        )

        # Parse and validate
        parsed = self._parse_response(response)
        if not self.validate_response(parsed):
            raise AdapterError("Invalid response")

        return TaskResult(
            agent=self.name,
            output=parsed,
            files=self._extract_files(parsed),
            success=True
        )

Workflow Engine

Workflow Execution

graph TD
    START([Start Workflow]) --> LOAD[Load Workflow Definition]
    LOAD --> VALIDATE[Validate Workflow]
    VALIDATE --> INIT[Initialize Agents]
    INIT --> ITER{Iteration < Max?}

    ITER -->|Yes| EXEC[Execute Workflow Steps]
    EXEC --> STEP1[Agent 1: Implementation]
    STEP1 --> STEP2[Agent 2: Review]
    STEP2 --> STEP3[Agent 3: Refinement]

    STEP3 --> COLLECT[Collect Feedback]
    COLLECT --> CHECK{Sufficient<br/>Suggestions?}

    CHECK -->|Yes| UPDATE[Update Context]
    UPDATE --> ITER

    CHECK -->|No| AGGREGATE[Aggregate Results]
    ITER -->|No| AGGREGATE

    AGGREGATE --> REPORT[Generate Report]
    REPORT --> END([End])

Workflow Configuration

Workflows are defined in YAML:

workflows:
  thorough:
    max_iterations: 5
    min_suggestions_threshold: 3
    steps:
      - agent: "codex"
        task: "implement"
        description: "Create initial implementation"

      - agent: "copilot"
        task: "suggestions"
        description: "Get alternative approaches"
        optional: true

      - agent: "gemini"
        task: "review"
        description: "Comprehensive code review"

      - agent: "claude"
        task: "refine"
        description: "Implement feedback"

      - agent: "gemini"
        task: "review"
        description: "Verify improvements"

Security Architecture

Security Layers

graph TD
    INPUT[User Input] --> VAL[Input Validation]
    VAL --> SANITIZE[Sanitization]
    SANITIZE --> RATE[Rate Limiting]
    RATE --> AUTH[Authorization Check]
    AUTH --> EXECUTE[Execute Task]
    EXECUTE --> AUDIT[Audit Logging]
    AUDIT --> OUTPUT[Return Output]

Security Components

  1. Input Validation
    • Command injection prevention
    • Path traversal protection
    • Malicious payload detection
  2. Rate Limiting
    • Token bucket algorithm
    • Per-user limits
    • Global rate limits
  3. Secret Management
    • Environment variables
    • Secure key storage
    • No hardcoded credentials
  4. Audit Logging
    • All security events logged
    • Tamper-proof logs
    • Retention policies

Implementation:

class SecurityManager:
    def validate_input(self, user_input: str) -> bool:
        # Check for command injection
        if self._contains_shell_metacharacters(user_input):
            raise SecurityError("Potential command injection")

        # Check for path traversal
        if self._contains_path_traversal(user_input):
            raise SecurityError("Path traversal detected")

        return True

    def rate_limit_check(self, user_id: str) -> bool:
        if not self.rate_limiter.allow_request(user_id):
            raise RateLimitError("Rate limit exceeded")
        return True

Monitoring & Observability

Metrics Architecture

graph LR
    A[Application] --> B[Metrics Collector]
    B --> C[Prometheus]
    C --> D[Grafana]
    D --> E[Dashboards]

    A --> F[Structured Logging]
    F --> G[Log Aggregator]
    G --> H[Log Analysis]

Key Metrics

Task Metrics:

Agent Metrics:

System Metrics:

Structured Logging

import structlog

logger = structlog.get_logger()

logger.info(
    "task_executed",
    task_id="task-123",
    workflow="default",
    duration_ms=1234.56,
    agent="codex",
    success=True
)

Deployment Architecture

Container Architecture

graph TD
    subgraph "Kubernetes Cluster"
        subgraph "Namespace: ai-orchestrator"
            POD1[Pod: Orchestrator]
            POD2[Pod: UI Backend]
            POD3[Pod: UI Frontend]

            SVC1[Service: Orchestrator]
            SVC2[Service: UI]

            ING[Ingress Controller]
        end

        subgraph "Namespace: monitoring"
            PROM[Prometheus]
            GRAF[Grafana]
        end

        PVC1[PersistentVolume: Workspace]
        PVC2[PersistentVolume: Sessions]
        PVC3[PersistentVolume: Logs]
    end

    POD1 --> SVC1
    POD2 --> SVC2
    POD3 --> SVC2

    SVC2 --> ING

    POD1 -.-> PVC1
    POD1 -.-> PVC2
    POD1 -.-> PVC3

    POD1 -.-> PROM
    PROM -.-> GRAF

Docker Compose Setup

version: '3.8'

services:
  orchestrator:
    build: .
    volumes:
      - ./workspace:/app/workspace
      - ./sessions:/app/sessions
    ports:
      - "9090:9090"  # Metrics
    environment:
      - LOG_LEVEL=INFO
      - ENABLE_METRICS=true

  prometheus:
    image: prom/prometheus
    volumes:
      - ./monitoring/prometheus.yml:/etc/prometheus/prometheus.yml
    ports:
      - "9091:9090"

  grafana:
    image: grafana/grafana
    ports:
      - "3000:3000"
    environment:
      - GF_SECURITY_ADMIN_PASSWORD=admin

Design Patterns

Patterns Used

1. Adapter Pattern

Provides a uniform interface to different AI agent CLIs.

2. Strategy Pattern

Workflows implement different strategies for task execution.

3. Chain of Responsibility

Request processing through validation, execution, and post-processing.

4. Observer Pattern

Real-time updates in Web UI via Socket.IO.

5. Factory Pattern

Agent and workflow creation.

6. Singleton Pattern

Configuration manager, metrics collector.

7. Decorator Pattern

Retry logic, caching, logging decorators.

Example: Retry Decorator

from functools import wraps
from tenacity import retry, stop_after_attempt, wait_exponential

def with_retry(max_attempts=3):
    def decorator(func):
        @wraps(func)
        @retry(
            stop=stop_after_attempt(max_attempts),
            wait=wait_exponential(multiplier=1, min=2, max=10)
        )
        def wrapper(*args, **kwargs):
            return func(*args, **kwargs)
        return wrapper
    return decorator

@with_retry(max_attempts=3)
def execute_agent_task(agent, task):
    return agent.execute(task)

Performance Considerations

Caching Strategy

graph LR
    A[Request] --> B{Cache Hit?}
    B -->|Yes| C[Return Cached]
    B -->|No| D[Execute Task]
    D --> E[Store in Cache]
    E --> F[Return Result]

Cache Types:

Async Execution

import asyncio

async def execute_workflow_async(tasks: List[Task]):
    # Parallel agent execution where possible
    results = await asyncio.gather(
        *[agent.execute_async(task) for task in tasks],
        return_exceptions=True
    )
    return results

Scalability

Horizontal Scaling

Vertical Scaling

Future Architecture Enhancements

  1. Message Queue Integration - RabbitMQ/Kafka for task distribution
  2. Distributed Caching - Redis cluster for shared cache
  3. Service Mesh - Istio for advanced traffic management
  4. Event Sourcing - Complete audit trail of all operations
  5. GraphQL API - Flexible query interface
  6. WebSocket Streaming - Real-time task progress
  7. Multi-tenancy - Isolated environments for multiple users
  8. Plugin System - Dynamic agent loading

For more information: