DocuThinker-AI-App

DocuThinker Architecture Documentation

Table of Contents


Overview

DocuThinker is a full-stack AI-powered document analysis and summarization application built using the FERN Stack (Firebase, Express, React, Node.js). The application leverages advanced AI/ML services to provide intelligent document processing, natural language understanding, and conversational AI capabilities.

Core Features


System Architecture

The application follows a microservices-oriented architecture with clear separation of concerns across multiple layers.

graph TB
    subgraph "Client Layer"
        A[Web Browser]
        B[Mobile App - React Native]
        C[VS Code Extension]
    end

    subgraph "CDN & Load Balancing"
        D[Vercel CDN]
        E[NGINX Load Balancer]
        F[Cloudflare DNS]
    end

    subgraph "Application Layer"
        G[React Frontend]
        H[Express Backend]
        I[GraphQL API]
    end

    subgraph "Service Layer"
        J[Auth Service]
        K[Document Service]
        L[AI/ML Service]
        M[Analytics Service]
    end

    subgraph "Data Layer"
        N[(Firebase Auth)]
        O[(Firestore)]
        P[(MongoDB Atlas)]
        Q[(Redis Cache)]
    end

    subgraph "External Services"
        R[Google Cloud NLP]
        S[Google AI Studio]
        T[LangChain]
        U[RabbitMQ]
    end

    A --> D
    B --> E
    C --> D
    D --> G
    E --> H
    G -->|REST API| H
    G -->|GraphQL| I
    H --> J
    H --> K
    H --> L
    H --> M
    J --> N
    K --> O
    K --> P
    L --> R
    L --> S
    L --> T
    H --> Q
    H --> U
    M --> P

Architecture Principles

  1. Separation of Concerns: Each layer has a distinct responsibility
  2. Scalability: Horizontal scaling through containerization and load balancing
  3. Resilience: Fault tolerance through caching, message queues, and redundancy
  4. Security: Multi-layer security with Firebase Auth, JWT, and HTTPS
  5. Performance: Optimized with Redis caching and CDN distribution

Frontend Architecture

The frontend is built with React 18 and follows a component-based architecture with modern React patterns.

graph TB
    subgraph "Frontend Application"
        A[App.js - Root Component]

        subgraph "Routing Layer"
            B[React Router v6]
            C[Protected Routes]
            D[Public Routes]
        end

        subgraph "State Management"
            E[Context API]
            F[Local Storage]
            G[Session Storage]
        end

        subgraph "UI Components"
            H[Material-UI Components]
            I[Custom Components]
            J[Styled Components]
        end

        subgraph "Pages"
            K[Landing Page]
            L[Home Page]
            M[Documents Page]
            N[Profile Page]
            O[Analytics Page]
        end

        subgraph "Services"
            P[API Service]
            Q[Auth Service]
            R[Storage Service]
        end

        subgraph "Utilities"
            S[Error Handling]
            T[Form Validation]
            U[Date Formatting]
        end
    end

    A --> B
    B --> C
    B --> D
    A --> E
    E --> F
    E --> G
    K --> H
    L --> H
    M --> H
    N --> H
    O --> H
    H --> I
    I --> J
    P --> Q
    P --> R
    K --> P
    L --> P
    M --> P
    N --> P
    O --> P

Frontend Technology Stack

Component Hierarchy

graph TD
    A[App.js] --> B[Navbar]
    A --> C[Routes]
    A --> D[Footer]

    C --> E[LandingPage]
    C --> F[Home]
    C --> G[DocumentsPage]
    C --> H[Profile]
    C --> I[AnalyticsPage]

    F --> J[UploadModal]
    F --> K[ChatModal]
    F --> L[Spinner]

    G --> M[DocumentViewer]
    G --> N[AdvancedSearch]
    G --> O[DocumentComparison]

    H --> P[ProfileForm]

    I --> Q[AnalyticsDashboard]
    I --> R[Charts & Graphs]

State Management Flow

sequenceDiagram
    participant User
    participant Component
    participant Context
    participant LocalStorage
    participant API

    User->>Component: Interaction
    Component->>Context: Update State
    Context->>LocalStorage: Persist Data
    Component->>API: Fetch/Update Data
    API->>Component: Response
    Component->>Context: Update Global State
    Context->>Component: Re-render

Backend Architecture

The backend follows the MVC (Model-View-Controller) pattern with additional service layers for business logic.

graph TB
    subgraph "Backend Architecture"
        A[Express Server]

        subgraph "Middleware Layer"
            B[CORS Middleware]
            C[Auth Middleware - JWT]
            D[Firebase Auth Middleware]
            E[Error Handler]
            F[Request Logger]
        end

        subgraph "Routes Layer"
            G[User Routes]
            H[Document Routes]
            I[AI/ML Routes]
            J[GraphQL Routes]
        end

        subgraph "Controller Layer"
            K[User Controller]
            L[Document Controller]
            M[AI Controller]
            N[Analytics Controller]
        end

        subgraph "Service Layer"
            O[User Service]
            P[Document Service]
            Q[AI/ML Service]
            R[Storage Service]
        end

        subgraph "Model Layer"
            S[User Model]
            T[Document Model]
            U[Analytics Model]
        end

        subgraph "Integration Layer"
            V[Firebase Admin SDK]
            W[Google Cloud APIs]
            X[LangChain]
            Y[Redis Client]
        end
    end

    A --> B
    A --> C
    A --> D
    A --> E
    A --> F

    B --> G
    C --> H
    D --> I

    G --> K
    H --> L
    I --> M
    J --> N

    K --> O
    L --> P
    M --> Q
    N --> R

    O --> S
    P --> T
    Q --> U

    O --> V
    P --> V
    Q --> W
    Q --> X
    P --> Y

MVC Pattern Implementation

Controllers

Handle HTTP requests and responses, coordinate between services and views.

// Example Controller Structure
exports.uploadDocument = async (req, res) => {
  try {
    // 1. Parse request
    const { userId, file } = req.body;

    // 2. Validate input
    if (!file) throw new Error('No file provided');

    // 3. Call service layer
    const result = await documentService.processDocument(userId, file);

    // 4. Format response
    sendSuccessResponse(res, 200, 'Document uploaded successfully', result);
  } catch (error) {
    // 5. Handle errors
    sendErrorResponse(res, 400, 'Document upload failed', error.message);
  }
};

Services

Contain business logic and interact with data models and external APIs.

graph LR
    A[Controller] --> B[Service Layer]
    B --> C[Firebase Auth]
    B --> D[Firestore]
    B --> E[AI/ML APIs]
    B --> F[Redis Cache]
    C --> G[Response]
    D --> G
    E --> G
    F --> G
    G --> A

Models

Define data schemas and database interactions.

classDiagram
    class User {
        +String id
        +String email
        +Date createdAt
        +Array documents
        +Object socialMedia
        +String theme
    }

    class Document {
        +String id
        +String userId
        +String title
        +String originalText
        +String summary
        +Array keyIdeas
        +Array discussionPoints
        +Date uploadedAt
    }

    class Analytics {
        +String userId
        +Number totalDocuments
        +Number totalSummaries
        +Object usageStats
        +Date lastAccess
    }

    User "1" --> "*" Document : has
    User "1" --> "1" Analytics : has

Database Architecture

DocuThinker uses a hybrid database approach with multiple database technologies for different purposes.

graph TB
    subgraph "Database Layer"
        A[Application Layer]

        subgraph "Firebase Firestore"
            B[Users Collection]
            C[Documents Collection]
            D[Analytics Collection]
        end

        subgraph "MongoDB Atlas"
            E[Session Data]
            F[Cache Data]
            G[Logs Collection]
        end

        subgraph "Redis Cache"
            H[API Responses]
            I[User Sessions]
            J[Document Summaries]
        end
    end

    A --> B
    A --> C
    A --> D
    A --> E
    A --> F
    A --> G
    A --> H
    A --> I
    A --> J

Firestore Schema

erDiagram
    USERS ||--o{ DOCUMENTS : owns
    USERS ||--|| ANALYTICS : has
    USERS {
        string uid PK
        string email
        timestamp createdAt
        array documents
        object socialMedia
        string theme
    }
    DOCUMENTS {
        string docId PK
        string userId FK
        string title
        text originalText
        text summary
        array keyIdeas
        array discussionPoints
        array highlights
        array comments
        timestamp uploadedAt
    }
    ANALYTICS {
        string userId PK
        number totalDocuments
        number totalChats
        object usageByDay
        timestamp lastAccess
    }

Data Access Patterns

sequenceDiagram
    participant Client
    participant Backend
    participant Redis
    participant Firestore
    participant MongoDB

    Client->>Backend: Request Data
    Backend->>Redis: Check Cache

    alt Cache Hit
        Redis->>Backend: Return Cached Data
        Backend->>Client: Response
    else Cache Miss
        Backend->>Firestore: Query Data
        Firestore->>Backend: Return Data
        Backend->>Redis: Update Cache
        Backend->>MongoDB: Log Access
        Backend->>Client: Response
    end

AI/ML Pipeline

The AI/ML pipeline processes documents through multiple stages to extract insights and generate summaries.

graph TB
    subgraph "AI/ML Pipeline"
        A[Document Upload] --> B[Text Extraction]

        B --> C{Document Type}
        C -->|PDF| D[PDF Parser]
        C -->|DOCX| E[DOCX Parser]
        C -->|TXT| F[Text Parser]

        D --> G[Text Preprocessing]
        E --> G
        F --> G

        G --> H[Chunking & Tokenization]

        H --> I{Processing Type}

        I -->|Summarization| J[LangChain Pipeline]
        I -->|NER| K[Named Entity Recognition]
        I -->|Sentiment| L[Sentiment Analysis]
        I -->|POS Tagging| M[Part-of-Speech Tagging]

        J --> N[Google Cloud NLP]
        J --> O[Custom Models]

        K --> P[Entity Extraction]
        L --> Q[Sentiment Score]
        M --> R[POS Tags]

        N --> S[Summary Generation]
        O --> S
        P --> T[Key Ideas]
        Q --> T
        R --> T

        S --> U[Result Aggregation]
        T --> U

        U --> V[Cache Results]
        V --> W[Return to Client]
    end

LangChain Integration

graph LR
    A[Document Text] --> B[Text Splitter]
    B --> C[Document Chunks]
    C --> D[Embedding Generator]
    D --> E[Vector Store]
    E --> F[Retriever]
    F --> G[LLM Chain]
    G --> H[Summary]

    I[User Query] --> F
    F --> J[Relevant Chunks]
    J --> G
    G --> K[AI Response]

AI Service Architecture

graph TB
    subgraph "AI Services Layer"
        A[AI Service Gateway]

        subgraph "Google Cloud Services"
            B[Natural Language API]
            C[Speech-to-Text API]
            D[Translation API]
        end

        subgraph "Custom Models"
            E[Summarization Model]
            F[Classification Model]
            G[Extraction Model]
        end

        subgraph "LangChain Pipeline"
            H[Document Loader]
            I[Text Splitter]
            J[Embeddings]
            K[Vector Store]
            L[Retrieval Chain]
        end
    end

    A --> B
    A --> C
    A --> D
    A --> E
    A --> F
    A --> G
    A --> H
    H --> I
    I --> J
    J --> K
    K --> L

Agentic RAG Orchestration (2024 Refresh)

DocuThinker’s revamped AI/ML core consolidates LangGraph, CrewAI, multi-provider LLMs, and optional Neo4j/Chroma persistence into a single DocumentIntelligenceService facade. Key characteristics:

graph LR
    subgraph Facade
        SVC[DocumentIntelligenceService]
        PIPE[AgenticRAGPipeline]
        CREW[CrewAI Squad]
        TOOLS[Semantic Tools]
    end

    subgraph Providers
        OAI[OpenAI]
        CLAUDE[Anthropic]
        GEM[Google Gemini]
        HF[Hugging Face Embeddings]
    end

    subgraph Persistence
        NEO[Neo4j]
        CHR[ChromaDB]
    end

    SVC --> PIPE
    PIPE --> CREW
    PIPE --> TOOLS
    TOOLS --> HF
    CREW --> OAI
    CREW --> CLAUDE
    CREW --> GEM
    SVC --> NEO
    SVC --> CHR

Authentication & Security

DocuThinker implements a multi-layered security architecture.

graph TB
    subgraph "Security Architecture"
        A[Client Request]

        subgraph "Transport Layer"
            B[HTTPS/TLS 1.3]
            C[Certificate Validation]
        end

        subgraph "Authentication Layer"
            D[Firebase Authentication]
            E[JWT Tokens]
            F[Session Management]
        end

        subgraph "Authorization Layer"
            G[Role-Based Access Control]
            H[Resource Permissions]
            I[API Rate Limiting]
        end

        subgraph "Data Protection"
            J[Data Encryption at Rest]
            K[Data Encryption in Transit]
            L[Secure Key Storage]
        end

        subgraph "Monitoring & Logging"
            M[Access Logs]
            N[Audit Trail]
            O[Anomaly Detection]
        end
    end

    A --> B
    B --> C
    C --> D
    D --> E
    E --> F
    F --> G
    G --> H
    H --> I
    I --> J
    J --> K
    K --> L
    L --> M
    M --> N
    N --> O

Authentication Flow

sequenceDiagram
    participant User
    participant Frontend
    participant Backend
    participant Firebase
    participant Firestore

    User->>Frontend: Enter Credentials
    Frontend->>Backend: POST /login
    Backend->>Firebase: Verify Credentials
    Firebase->>Backend: Return User ID
    Backend->>Firebase: Generate Custom Token
    Firebase->>Backend: Return JWT
    Backend->>Firestore: Fetch User Data
    Firestore->>Backend: Return User Profile
    Backend->>Frontend: Return JWT + User Data
    Frontend->>Frontend: Store Token in LocalStorage
    Frontend->>User: Redirect to Dashboard

Authorization Middleware

graph LR
    A[Incoming Request] --> B{Has Token?}
    B -->|No| C[Return 401 Unauthorized]
    B -->|Yes| D{Valid Token?}
    D -->|No| E[Return 401 Unauthorized]
    D -->|Yes| F{Has Permission?}
    F -->|No| G[Return 403 Forbidden]
    F -->|Yes| H[Process Request]

Caching Strategy

Redis is used for multi-level caching to optimize performance.

graph TB
    subgraph "Caching Architecture"
        A[Client Request]

        subgraph "Application Cache"
            B[In-Memory Cache]
            C[Browser LocalStorage]
        end

        subgraph "Redis Cache Layers"
            D[API Response Cache]
            E[Document Summary Cache]
            F[User Session Cache]
            G[Analytics Cache]
        end

        subgraph "Cache Strategies"
            H[Cache-Aside Pattern]
            I[Write-Through Cache]
            J[TTL-Based Expiration]
        end

        subgraph "Cache Invalidation"
            K[Manual Invalidation]
            L[Event-Based Invalidation]
            M[Time-Based Expiration]
        end
    end

    A --> B
    A --> C
    B --> D
    C --> D
    D --> E
    D --> F
    D --> G
    H --> D
    I --> E
    J --> F
    K --> D
    L --> E
    M --> G

Cache Flow

sequenceDiagram
    participant Client
    participant Server
    participant Redis
    participant Database

    Client->>Server: Request Data
    Server->>Redis: Check Cache

    alt Cache Hit
        Redis->>Server: Return Cached Data
        Server->>Client: Response (Fast)
    else Cache Miss
        Redis->>Server: Cache Miss
        Server->>Database: Query Database
        Database->>Server: Return Data
        Server->>Redis: Store in Cache (TTL: 1hr)
        Server->>Client: Response (Slower)
    end

Message Queue Architecture

RabbitMQ handles asynchronous tasks and background jobs.

graph TB
    subgraph "Message Queue System"
        A[API Request]

        subgraph "Producers"
            B[Document Upload Handler]
            C[AI Processing Handler]
            D[Email Notification Handler]
        end

        subgraph "RabbitMQ"
            E[Document Queue]
            F[AI Processing Queue]
            G[Notification Queue]
            H[Dead Letter Queue]
        end

        subgraph "Consumers"
            I[Document Processor]
            J[AI Worker]
            K[Email Worker]
        end

        subgraph "Result Handlers"
            L[Success Handler]
            M[Retry Handler]
            N[Error Handler]
        end
    end

    A --> B
    A --> C
    A --> D

    B --> E
    C --> F
    D --> G

    E --> I
    F --> J
    G --> K

    I --> L
    J --> L
    K --> L

    I --> M
    J --> M
    K --> M

    I --> H
    J --> H
    K --> H

    H --> N

Async Processing Flow

sequenceDiagram
    participant Client
    participant API
    participant Queue
    participant Worker
    participant Database
    participant Notification

    Client->>API: Upload Document
    API->>Queue: Enqueue Processing Job
    API->>Client: Return Job ID (202 Accepted)

    Queue->>Worker: Dequeue Job
    Worker->>Worker: Process Document
    Worker->>Database: Store Results
    Worker->>Notification: Send Completion Event
    Notification->>Client: Notify User

Deployment Architecture

Multi-platform deployment with CI/CD automation.

graph TB
    subgraph "Deployment Pipeline"
        A[Git Repository]

        subgraph "CI/CD"
            B[GitHub Actions]
            C[Jenkins Pipeline]
        end

        subgraph "Build Stage"
            D[Install Dependencies]
            E[Run Tests]
            F[Build Assets]
            G[Docker Image Build]
        end

        subgraph "Deployment Targets"
            H[Vercel - Frontend]
            I[Render - Backend]
            J[Netlify - Backup]
            K[Docker Hub]
        end

        subgraph "Production Services"
            L[Firebase Auth]
            M[MongoDB Atlas]
            N[Redis Cloud]
            O[Google Cloud APIs]
        end
    end

    A --> B
    A --> C

    B --> D
    C --> D

    D --> E
    E --> F
    F --> G

    F --> H
    G --> I
    F --> J
    G --> K

    I --> L
    I --> M
    I --> N
    I --> O

CI/CD Workflow

sequenceDiagram
    participant Dev as Developer
    participant Git as GitHub
    participant CI as CI/CD Pipeline
    participant Test as Test Suite
    participant Build as Build System
    participant Deploy as Deployment
    participant Prod as Production

    Dev->>Git: Push Code
    Git->>CI: Trigger Pipeline
    CI->>Test: Run Tests

    alt Tests Pass
        Test->>CI: Success
        CI->>Build: Build Assets
        Build->>CI: Build Complete
        CI->>Deploy: Deploy to Staging
        Deploy->>CI: Staging Success
        CI->>Deploy: Deploy to Production
        Deploy->>Prod: Update Live
        Prod->>CI: Deployment Success
        CI->>Dev: Notify Success
    else Tests Fail
        Test->>CI: Failure
        CI->>Dev: Notify Failure
    end

Container Orchestration

Kubernetes manages containerized deployments.

graph TB
    subgraph "Kubernetes Cluster"
        A[Ingress Controller]

        subgraph "Frontend Deployment"
            B[Frontend Service]
            C[Pod 1 - React]
            D[Pod 2 - React]
            E[Pod 3 - React]
        end

        subgraph "Backend Deployment"
            F[Backend Service]
            G[Pod 1 - Express]
            H[Pod 2 - Express]
            I[Pod 3 - Express]
        end

        subgraph "Supporting Services"
            J[Redis Service]
            K[MongoDB Service]
            L[RabbitMQ Service]
        end

        subgraph "Configuration"
            M[ConfigMap]
            N[Secrets]
            O[Persistent Volumes]
        end

        subgraph "Monitoring"
            P[Prometheus]
            Q[Grafana]
            R[Logs Aggregator]
        end
    end

    A --> B
    A --> F

    B --> C
    B --> D
    B --> E

    F --> G
    F --> H
    F --> I

    G --> J
    H --> K
    I --> L

    M --> G
    N --> G
    O --> K

    P --> Q
    R --> Q

Auto-Scaling Configuration

graph LR
    A[Metrics Server] --> B{CPU > 70%}
    B -->|Yes| C[Horizontal Pod Autoscaler]
    C --> D[Scale Up Pods]
    D --> E[Load Balancer]

    A --> F{CPU < 30%}
    F -->|Yes| G[HPA]
    G --> H[Scale Down Pods]
    H --> E

    E --> I[Distribute Traffic]

API Design

RESTful and GraphQL APIs with comprehensive documentation.

graph TB
    subgraph "API Gateway"
        A[Client Request]

        subgraph "REST API"
            B[api/users]
            C[api/documents]
            D[api/ai]
            E[api/analytics]
        end

        subgraph "GraphQL API"
            F[graphql]
            G[Queries]
            H[Mutations]
            I[Subscriptions]
        end

        subgraph "Documentation"
            J[Swagger/OpenAPI]
            K[GraphiQL Interface]
            L[Postman Collection]
        end
    end

    A --> B
    A --> C
    A --> D
    A --> E
    A --> F

    F --> G
    F --> H
    F --> I

    B --> J
    C --> J
    D --> J
    E --> J
    F --> K

API Request Flow

sequenceDiagram
    participant Client
    participant Gateway
    participant Auth
    participant Controller
    participant Service
    participant Database
    participant Cache

    Client->>Gateway: API Request + JWT
    Gateway->>Auth: Validate Token
    Auth->>Gateway: Token Valid
    Gateway->>Controller: Route to Controller
    Controller->>Cache: Check Cache

    alt Cache Hit
        Cache->>Controller: Return Cached Data
    else Cache Miss
        Cache->>Service: Cache Miss
        Service->>Database: Query Data
        Database->>Service: Return Data
        Service->>Cache: Update Cache
        Service->>Controller: Return Data
    end

    Controller->>Gateway: Format Response
    Gateway->>Client: JSON Response

Data Flow

End-to-end data flow through the application.

graph TB
    A[User] --> B[Frontend UI]
    B --> C[API Layer]

    C --> D{Request Type}

    D -->|Upload| E[Document Processing]
    D -->|Query| F[Data Retrieval]
    D -->|Auth| G[Authentication]

    E --> H[File Parser]
    H --> I[AI Processing]
    I --> J[Results Storage]

    F --> K[Cache Check]
    K -->|Hit| L[Return Cached]
    K -->|Miss| M[Database Query]
    M --> N[Update Cache]
    N --> L

    G --> O[Firebase Auth]
    O --> P[Token Generation]

    J --> Q[Response Formatter]
    L --> Q
    P --> Q

    Q --> R[JSON Response]
    R --> B
    B --> A

Document Processing Flow

sequenceDiagram
    participant User
    participant Frontend
    participant Backend
    participant Queue
    participant AI Service
    participant Database
    participant Cache

    User->>Frontend: Upload Document
    Frontend->>Backend: POST /upload
    Backend->>Queue: Enqueue Processing Job
    Backend->>Frontend: Job ID + Status Link
    Frontend->>User: Show Processing Status

    Queue->>AI Service: Process Document
    AI Service->>AI Service: Extract Text
    AI Service->>AI Service: Generate Summary
    AI Service->>AI Service: Extract Entities
    AI Service->>Database: Store Results
    AI Service->>Cache: Cache Summary
    AI Service->>Backend: Processing Complete
    Backend->>Frontend: WebSocket Notification
    Frontend->>User: Display Results

Scalability & Performance

Strategies for handling growth and maintaining performance.

graph TB
    subgraph "Scalability Architecture"
        A[Application Growth]

        subgraph "Horizontal Scaling"
            B[Load Balancer]
            C[Multiple Server Instances]
            D[Database Replication]
        end

        subgraph "Vertical Scaling"
            E[Increased Resources]
            F[Better Hardware]
        end

        subgraph "Performance Optimization"
            G[Redis Caching]
            H[CDN Distribution]
            I[Code Splitting]
            J[Lazy Loading]
        end

        subgraph "Database Optimization"
            K[Indexing]
            L[Query Optimization]
            M[Connection Pooling]
        end

        subgraph "Monitoring"
            N[APM Tools]
            O[Performance Metrics]
            P[Error Tracking]
        end
    end

    A --> B
    A --> E

    B --> C
    C --> D

    E --> F

    G --> H
    H --> I
    I --> J

    K --> L
    L --> M

    N --> O
    O --> P

Performance Metrics

graph LR
    A[Performance Monitoring] --> B[Response Time]
    A --> C[Throughput]
    A --> D[Error Rate]
    A --> E[Resource Usage]

    B --> F[< 200ms Target]
    C --> G[1000 req/sec]
    D --> H[< 0.1%]
    E --> I[CPU < 70%]

    F --> J[Alerts]
    G --> J
    H --> J
    I --> J

Technology Stack

Comprehensive overview of all technologies used.

mindmap
  root((DocuThinker Tech Stack))
    Frontend
      React 18
      Material-UI
      TailwindCSS
      React Router
      Axios
      Context API
    Backend
      Node.js
      Express
      Firebase Admin SDK
      GraphQL
      JWT
    Database
      Firestore
      MongoDB Atlas
      Redis Cache
    AI/ML
      Google Cloud NLP
      LangChain
      Custom NLP Models
      Speech-to-Text
    DevOps
      Docker
      Kubernetes
      Jenkins
      GitHub Actions
      NGINX
    Cloud Services
      Vercel
      Render
      Firebase
      Google Cloud
    Monitoring
      Analytics
      Error Tracking
      Performance Monitoring

Technology Decisions

Category Technology Reason
Frontend Framework React 18 Component reusability, large ecosystem, performance
Backend Framework Express.js Lightweight, flexible, extensive middleware support
Authentication Firebase Auth Secure, scalable, built-in user management
Database Firestore + MongoDB Real-time updates (Firestore), flexible schema (MongoDB)
Caching Redis In-memory speed, advanced data structures
AI/ML Google Cloud NLP + LangChain Accuracy, scalability, ease of integration
Containerization Docker Environment consistency, easy deployment
Orchestration Kubernetes Auto-scaling, self-healing, load balancing
CI/CD GitHub Actions + Jenkins Automation, integration with GitHub
Monitoring Google Analytics + Custom User behavior tracking, performance metrics

Conclusion

DocuThinker’s architecture is designed for scalability, performance, and maintainability. The multi-layered approach ensures:

For more details, refer to:


Last Updated: January 2025 Version: 1.0.0 Author: Son Nguyen