Synthetic Experts

I. The Current Landscape: Al's Environmental and Economic Challenges

1.1 AI Energy Consumption and Emissions

• Environmental Cost:

- A single ChatGPT query = electricity to power a light bulb for 20 minutes (Allen Institute for AI, 2024).
- Google's greenhouse gas emissions +48% since 2019 due to Al.
- Microsoft's emissions +29% since 2020, linked to building more data centers for AI.
- In 2023, Google abandoned operational carbon neutrality.
- E-Waste:
 - Rapid model obsolescence leads to significant electronic waste (Technology Review, 2024).

1.2 AI Industry and Costs

- Training Large Models:
 - Meta's Llama 3 405B needed ~31 million GPU hours using 16,000 H100 GPUs.
 - Training emissions equivalent to powering **15,000 households**.
- Inference and Infrastructure:
 - Even running queries on large models demands significant capital and operational expense.
 - Cost structure: Rent and own GPUs, electricity, cooling, infrastructure.
- Hype Cycle:

II. Rethinking AI: Specialized vs. Generalized Models

2.1 General AI (e.g., GPT-4, Gemini)

Feature	Characteristics
Scope	Wide — can tackle many tasks
Resource Usage	Very high
Accessibility	Largely centralized, expensive
Examples	GPT-4, Gemini, Claude-3

2.2 Specialized AI (e.g., Custom Classifiers)

Feature	Characteristics
Scope	Narrow — specific task focus
Resource Usage	Low (lighter models, faster inference)
Accessibility	Local, open-source, reproducible
Examples	Toxicity classifiers, MMX specialists

Analogy:

"Why buy the whole candy store when you just need a lollypop?"

III. Specialized AI in Marketing: MMX on Social Media

3.1 Marketing Problem

- Marketing managers must understand marketing mix effectiveness.
- The 4 Ps of Marketing Mix:
 - Product
 - Place
 - Price
 - Promotion
- Challenge:

Manual human analysis of millions of tweets/posts is **slow**, **expensive**, and **subjective**.

• Opportunity:

Train specialized AI classifiers to **automatically categorize consumer comments** by MMX elements.

3.2 The Classification Task

• Example Tweet:

"Their new online shop is a catastrophe! Took me an hour to enter a billing address."

- Correct Classification:
 - → *Place* (distribution/channel experience)
- Simple Metrics Fail:
 - Sentiment alone ("positive" vs. "negative") doesn't reveal what went wrong.

IV. Building Synthetic Specialists: A New Approach

4.1 Traditional vs. New Labeling Approaches

Method	Pros	Cons
Crowdsourcing (e.g., MTurk)	Fast, cheap for simple labels	Poor quality for complex constructs
Human Experts	High-quality labels	Expensive, time-intensive
Generative AI Labeling	Fast, low human input	Proprietary, costly per API call, privacy concerns

4.2 Synthetic Specialists Concept

• Definition:

Specialized AI models **fine-tuned** on a specific classification task using **open-source architectures**.

- Process:
 - 1. Use Generative AI (GPT-40, Llama 3) to label a large dataset.
 - 2. Fine-tune an open-source model (e.g., BERTweet) on this labeled data.
 - 3. Deploy this fine-tuned model locally for fast, cheap, private inference.

V. Methodology for Building a Synthetic Specialist

5.1 Step-by-Step Pipeline

- 1. Data Collection:
 - 699 brands
 - Tweets mentioning brands (N = 30,000 for training)
- 2. Labeling with GenAI:
 - 3 LLMs label each Tweet
 - Majority voting ensures label reliability

3. Preprocessing:

- Replace URLs
- Normalize whitespace
- Anonymize users

4. Model Fine-tuning:

- Base Model: BERTweet-Large (trained on 873M tweets)
- Add classification layer for MMX categories.
- Fine-tune with low learning rate, small batch sizes.

5. Validation:

- Compare model output to **expert-labeled** tweets.
- Use Krippendorff's α for agreement measure.

5.2 Fine-tuning Details

- Training Loss: Binary Cross Entropy
- Optimizer: Adam
- Batch Size: 16
- Learning Rate: 1e-5
- Epochs: 4 with early stopping

VI. Results and Evaluation

6.1 Evaluation Metrics

- Krippendorff's α:
 - $\circ \alpha > 0.8$ = Reliable
 - α 0.67-0.8 = Acceptable
 - α < 0.67 = Insufficient

- Performance:
 - Fine-tuned Specialist achieved reliable agreement with expert labels.
 - Performance **comparable to GenAl** but at a fraction of the cost.

6.2 Efficiency Gains

Metric	GenAl API	Synthetic Specialist
Tweets per second	~0.8	114
Cost per Tweet	~\$0.002	\$0.000002
CO2 Emission	Significant	Negligible
Speed	Slow (API)	Near real-time (local)

VII. Applications and Implications

7.1 Insights Enabled by MMX Specialist

- Differentiate Product, Place, Price, Promotion feedback across brands.
- Detect pain points (e.g., Abercrombie's e-commerce issues).
- Segment and cluster consumer discussions.
- Perform topic modeling and sentiment analysis by MMX category.

7.2 Broader Organizational Impact

- Business:
 - Faster, cheaper, greener AI deployments.
 - No dependency on external GenAl providers.
- Research:
 - Synthetic specialists allow reproducibility and greater transparency.
- Society:
 - Local AI: democratization of powerful tools without ecological disaster.

VIII. Conclusion: Why Synthetic Specialists Matter

Advantage	Impact
8% more accurate	vs. direct GenAl labeling
150x faster	inference than GenAl
8,400x cheaper	per inference
99.99% lower CO2 emissions	vs. GenAl API