Production Ready

AI Coding Tools Orchestrator

Coordinate multiple AI coding assistants to collaborate on complex software development tasks

Python 3.8+ Vue 3 Docker Ready Kubernetes Prometheus

Overview

🤝

Multi-Agent Collaboration

Coordinate Claude, Codex, Gemini, and Copilot to work together on your code with intelligent workflows.

💻

Interactive CLI & Web UI

Choose between a powerful command-line interface or modern web UI with real-time updates.

⚙️

Configurable Workflows

Define custom collaboration patterns or use built-in workflows for different scenarios.

🛡️

Production Ready

Security, monitoring, rate limiting, retry logic, and comprehensive test coverage built-in.

How It Works

graph LR
    A[User Request] --> B[AI Orchestrator]
    B --> C[Codex: Implementation]
    C --> D[Gemini: Review]
    D --> E[Claude: Refinement]
    E --> F[Quality Code]

    style A fill:#667eea,stroke:#667eea,color:#fff
    style B fill:#764ba2,stroke:#764ba2,color:#fff
    style C fill:#f093fb,stroke:#f093fb,color:#fff
    style D fill:#4facfe,stroke:#4facfe,color:#fff
    style E fill:#00f2fe,stroke:#00f2fe,color:#fff
    style F fill:#43e97b,stroke:#43e97b,color:#fff
                
4
AI Agents
14+
Python Files
5
Workflows
80%+
Test Coverage

Core Features

🤖

Multi-Agent Collaboration

Coordinate multiple AI assistants with specialized roles:

  • Codex: Initial implementation
  • Gemini: Code review & analysis
  • Claude: Refinement & documentation
  • Copilot: Alternative suggestions
💬

Interactive Shell

  • REPL-style conversation interface
  • Smart follow-up detection
  • Full readline support & history
  • Session save/restore
  • Colored output with Rich
🌐

Modern Web UI

  • Vue 3 with Composition API
  • Real-time updates via Socket.IO
  • Monaco code editor (VS Code)
  • File management & downloads
  • Conversation mode toggle
📊

Monitoring & Metrics

  • Prometheus metrics integration
  • Structured logging (structlog)
  • Health & readiness checks
  • Performance tracking
  • Error rate monitoring
🛡️

Security Features

  • Input validation & sanitization
  • Rate limiting (token bucket)
  • Audit logging
  • Secret management
  • Security scanning (Bandit)

Performance

  • Async execution support
  • Multi-layer caching
  • Connection pooling
  • Retry logic with backoff
  • Circuit breaker pattern
🚢

Deployment Options

  • Docker & Docker Compose
  • Kubernetes manifests
  • Systemd service files
  • CI/CD with GitHub Actions
  • Multi-environment configs
🔧

Code Quality

  • Type hints with Pydantic
  • 80%+ test coverage (pytest)
  • Black code formatting
  • Flake8 linting
  • MyPy type checking

System Architecture

The AI Orchestrator follows a modular, layered architecture with clear separation of concerns. It's designed for extensibility, reliability, and production-grade performance.

flowchart TB
    subgraph "User
Interfaces" CLI[CLI Shell
Click + Rich] WebUI[Web UI
Vue 3 + Socket.IO] end subgraph "Core
Orchestrator" Engine[Orchestration
Engine] Workflow[Workflow
Manager] Config[Config
Manager] Session[Session
Manager] end subgraph "Cross-Cutting
Concerns" Metrics[Prometheus
Metrics] Cache[Response
Cache] Retry[Retry
Logic] Security[Security
Layer] end subgraph "AI
Adapters" Claude[Claude
Adapter] Codex[Codex
Adapter] Gemini[Gemini
Adapter] Copilot[Copilot
Adapter] end subgraph "External AI
Tools" ClaudeCLI[Claude Code
CLI] CodexCLI[OpenAI Codex
CLI] GeminiCLI[Google Gemini
CLI] CopilotCLI[GitHub Copilot
CLI] end CLI --> Engine WebUI --> Engine Engine --> Workflow Engine --> Config Engine --> Session Workflow --> Metrics Workflow --> Cache Workflow --> Retry Workflow --> Security Workflow --> Claude Workflow --> Codex Workflow --> Gemini Workflow --> Copilot Claude --> ClaudeCLI Codex --> CodexCLI Gemini --> GeminiCLI Copilot --> CopilotCLI style CLI fill:#667eea,stroke:#667eea,color:#fff style WebUI fill:#667eea,stroke:#667eea,color:#fff style Engine fill:#4facfe,stroke:#4facfe,color:#fff style Workflow fill:#43e97b,stroke:#43e97b,color:#fff

1. Interface Layer

User-facing interfaces: CLI and Web UI

2. Orchestration Layer

Core business logic and workflow management

3. Cross-Cutting Layer

Security, caching, metrics, and logging

4. Adapter Layer

AI agent integrations with uniform interface

5. External Services

Third-party AI CLI tools

Design Patterns

Adapter Pattern

Uniform interface to different AI CLIs

Strategy Pattern

Configurable workflow strategies

Observer Pattern

Real-time UI updates via Socket.IO

Factory Pattern

Agent and workflow creation

Singleton Pattern

Config and metrics managers

Decorator Pattern

Retry, cache, and logging decorators

Quick Start

1

Clone Repository

git clone <repository-url>
cd AI-Coding-Tools-Collaborative
2

Install Dependencies

pip install -r requirements.txt
chmod +x ai-orchestrator
3

Verify Installation

./ai-orchestrator --help
./ai-orchestrator agents
4

Start Interactive Shell

./ai-orchestrator shell

Prerequisites

  • Python 3.8+ - Core runtime
  • Node.js 20+ - For Web UI (optional)
  • At least one AI CLI - Claude, Codex, Gemini, or Copilot
  • Docker - For containerized deployment (optional)

Example Usage

# Start interactive shell
./ai-orchestrator shell

orchestrator (default) > create a REST API for user management
✓ Task completed successfully!
📁 Generated Files:
  📄 api/routes.py
  📄 api/models.py

orchestrator (default) > add JWT authentication
💡 Detected as follow-up to previous task
✓ Authentication added!

orchestrator (default) > /save user-api-project
✓ Session saved!

Available Workflows

Workflow Agents Iterations Use Case
default Codex → Gemini → Claude 3 Production-quality code with review
quick Codex only 1 Fast prototyping and iteration
thorough Codex → Copilot → Gemini → Claude → Gemini 5 Mission-critical or security-sensitive
review-only Gemini → Claude 2 Analyzing existing code
document Claude → Gemini 2 Generating documentation

Workflow Execution Flow

graph TD
    START([Start]) --> LOAD[Load Workflow Config]
    LOAD --> VALIDATE[Validate Configuration]
    VALIDATE --> INIT[Initialize Agents]
    INIT --> ITER{Iteration < Max?}

    ITER -->|Yes| EXEC[Execute Workflow Steps]
    EXEC --> AGENT1[Agent 1]
    AGENT1 --> AGENT2[Agent 2]
    AGENT2 --> AGENT3[Agent 3]

    AGENT3 --> COLLECT[Collect Feedback]
    COLLECT --> CHECK{Sufficient
Suggestions?} CHECK -->|Yes| UPDATE[Update Context] UPDATE --> ITER CHECK -->|No| AGG[Aggregate Results] ITER -->|No| AGG AGG --> REPORT[Generate Report] REPORT --> END([End]) style START fill:#667eea,stroke:#667eea,color:#fff style END fill:#43e97b,stroke:#43e97b,color:#fff

Custom Workflows

Define your own workflows in config/agents.yaml:

workflows:
  custom:
    max_iterations: 4
    min_suggestions_threshold: 5
    steps:
      - agent: "codex"
        task: "implement"
      - agent: "gemini"
        task: "security_review"
      - agent: "claude"
        task: "refine"

Documentation

Technology Stack

Core

  • Python 3.8+
  • Click (CLI)
  • Rich (Terminal)
  • Pydantic (Validation)

Web UI

  • Vue 3
  • Vite
  • TailwindCSS
  • Monaco Editor

Backend

  • Flask
  • Flask-SocketIO
  • Socket.IO
  • Pinia

Monitoring

  • Prometheus
  • Structlog
  • Grafana
  • Health Checks

Testing

  • Pytest
  • Coverage
  • MyPy
  • Black

Deployment

  • Docker
  • Kubernetes
  • GitHub Actions
  • Systemd

Community & Support

💬

GitHub Discussions

Ask questions, share ideas, and connect with other users

Join Discussions →
🐛

Issue Tracker

Report bugs, request features, and track development

View Issues →
🤝

Contributing

Help improve the project with code, docs, or ideas

Contribution Guide →
📧

Security

Report security vulnerabilities responsibly

Security Policy →

Quick Contribution Guide

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/your-feature
  3. Make your changes with tests
  4. Run checks: make all
  5. Commit: git commit -m "feat: add amazing feature"
  6. Push and create a Pull Request

Built With

Click Rich Pydantic Vue 3 Flask Monaco Editor Prometheus Docker Kubernetes

See It In Action

Interactive CLI Shell

$ ./ai-orchestrator shell

Welcome to AI Orchestrator v1.0.0
Type /help for available commands

orchestrator (default) > create a Python REST API with FastAPI

🤖 Executing workflow: default
📊 Step 1/3: Codex (Implementation)
⏳ Processing...

✓ Implementation complete!

📊 Step 2/3: Gemini (Review)
⏳ Analyzing code...

✓ Review complete! Found 3 suggestions:
  • Add input validation
  • Include error handling
  • Add API documentation

📊 Step 3/3: Claude (Refinement)
⏳ Implementing improvements...

✓ Task completed successfully!

📁 Generated Files:
  📄 app/main.py (FastAPI app)
  📄 app/models.py (Pydantic models)
  📄 app/routes.py (API routes)
  📄 app/schemas.py (Request/response schemas)
  📄 tests/test_api.py (Unit tests)
  📄 requirements.txt (Dependencies)

Workspace: ./workspace/session-abc123

orchestrator (default) > add authentication
💡 Detected as follow-up to previous task

Modern Web Interface

The Web UI provides a visual interface with:

  • Real-time progress tracking with live updates
  • Monaco code editor (same as VS Code)
  • File browser and management
  • Conversation mode for iterative development
  • Workflow and iteration visualization
Task Input

Multi-line textarea with syntax highlighting

Live Updates

Socket.IO for real-time progress

Code Editor

Full Monaco editor with IntelliSense

Workflow Execution

# Run with specific workflow
./ai-orchestrator run "Build authentication system" --workflow thorough

# Custom iterations
./ai-orchestrator run "Optimize database queries" --max-iterations 5

# With verbose output
./ai-orchestrator run "Add caching layer" --workflow default --verbose

# Dry run to preview
./ai-orchestrator run "Refactor code" --dry-run

# Load previous session
./ai-orchestrator shell --load my-project

Ready to Get Started?

Join developers using AI Orchestrator to build better software faster